import numpy as np
def simplex_number_numpy_optimized(d, n):
# 初始化动态规划表
dp = np.zeros((d + 1, n + 1), dtype=int)
dp[1, :] = np.arange(n + 1) # 初始化一维简单形数
# 递归关系:直接利用 Numpy 数组操作
for dim in range(2, d + 1):
dp[dim, 1:] = np.cumsum(dp[dim - 1, 1:])
return dp[d, n]
# 示例:计算 5 维的第 4 项
result = simplex_number_numpy_optimized(20, 9)
print(f"5D 第 4 项:{result}")
aW1wb3J0IG51bXB5IGFzIG5wCgpkZWYgc2ltcGxleF9udW1iZXJfbnVtcHlfb3B0aW1pemVkKGQsIG4pOgogICAgIyDliJ3lp4vljJbliqjmgIHop4TliJLooagKICAgIGRwID0gbnAuemVyb3MoKGQgKyAxLCBuICsgMSksIGR0eXBlPWludCkKICAgIGRwWzEsIDpdID0gbnAuYXJhbmdlKG4gKyAxKSAgIyDliJ3lp4vljJbkuIDnu7TnroDljZXlvaLmlbAKICAgIAogICAgIyDpgJLlvZLlhbPns7vvvJrnm7TmjqXliKnnlKggTnVtcHkg5pWw57uE5pON5L2cCiAgICBmb3IgZGltIGluIHJhbmdlKDIsIGQgKyAxKToKICAgICAgICBkcFtkaW0sIDE6XSA9IG5wLmN1bXN1bShkcFtkaW0gLSAxLCAxOl0pCiAgICAKICAgIHJldHVybiBkcFtkLCBuXQoKIyDnpLrkvovvvJrorqHnrpcgNSDnu7TnmoTnrKwgNCDpobkKcmVzdWx0ID0gc2ltcGxleF9udW1iZXJfbnVtcHlfb3B0aW1pemVkKDIwLCA5KQpwcmludChmIjVEIOesrCA0IOmhue+8mntyZXN1bHR9IikK